Tudomány kategóriaarchívum

Rend és káosz

Rend és káosz: a közvélekedés egymás tökéletes ellentéteként tartja számon őket, a kiszámíthatóság és a megjósolhatatlanság, ha példát szeretnénk adni a kibékíthetetlen ellentétre, általában a rend és a káosz jut először eszünkbe.

És az ellentét tényleg valóságos: a rendezett állapotban lévő rendszer vagy nem változik az időben, vagy pedig pontosan kiszámítható a viselkedése. A kaotikus rendszer ezzel ellentétben kiszámíthatatlan, megjósolhatatlan, hogy az állapota milyen lesz egy jövőbeli pillanatban. Ráadásul ez a kiszámíthatatlan viselkedés nem is mindig annak köszönhető, hogy a rendszer nem determinisztikus, azaz véletlenszerű, tökéletesen determinisztikus rendszerek is lehetnek kaotikusak, amint azt az alábbi példákban látni fogjuk.

Ám ami igazán érdekes a kaotikus rendszerekben az az, hogy valamiképpen mégis csak korlátozottak, egy kaotikus rendszernek is meg vannak a határai, tehát egy kaotikus rendszer nem valamiféle mindent felfaló szörny, szabályoknak engedelmeskedik az ilyen rendszer is, csak ezt éppen nem tudjuk a viselkedésének előrejelzésére használni.

A kaotikus rendszer legfontosabb jellemzője a rendkívüli érzékenység a kezdeti feltételekre, és éppen ebből fakad a kiszámíthatatlansága. A legkisebb eltérés a kezdeti feltétekben óriási különbségeket okozhat a későbbi viselkedésben. Ezt szokták pillangó-effektusként emlegetni, egy pillangó szárnycsapása az Amazonas vidékén, óriási hurrikánt okozhat az Atlanti-óceánon. És ez nem túlzás, a kaotikus rendszer valóban ilyen.

Képzeljünk el egy teljesen sík lapot, amire egyenként homokszemeket ejtünk le. Kezdetben a homokkupac szépen fog növekedni, aztán ahogy egyre nagyobb lesz, és az oldala egyre meredekebben emelkedik, úgy fog egy-egy homokszem lecsúszni az oldalán. Aztán eljön az a pillanat, amikor a homokszemek elhelyezkedése olyan belső feszültséget okoz a kupacban, hogy egyetlen újabb homokszem érkezése, egy hatalmas omlást okozhat, a halom nagyon nagy darabja válhat le egyszerre, És hogy mikor jön el ez a pillanat, na ez az, amit nem lehet kiszámítani. Pedig a homokdomb viselkedését csak két dolog befolyásolja, a gravitáció és a homokszemek tapadása. Mindkettő leírható a fizika egyenleteivel. De a számításokban csak véges pontosságú számok szerepelhetnek, a kaotikus viselkedést viszont pontosan a rendszer érzékenysége okozza, amit csak olyan kis számokkal lehet leírni, ami a jelenlegi eszközeinkkel nem lehetséges.

         Most pedig nézzünk konkrét példákat a kaotikus rendszerekre: 

Csillagászat

Stabil-e a Naprendszer? Ez a kérdés elsőrendű fontosságú mindannyiunk számára, ha ugyanis a rendszer, aminek a Föld és rajta mindannyian a részei vagyunk, instabilnak bizonyulna, az katasztrofális következményekkel járna.

Azt hihetnénk a válasz egyszerű, hiszen a Naprendszer viselkedését egyedül a gravitáció irányítja, a megfelelő egyenletek megoldásával, a kérdés eldönthető. Csakhogy van egy bökkenő, az egyenletek csak akkor oldhatóak meg, ha a rendszerben mindössze két égitest van. Három test esetén, amit háromtest problémának nevez a fizika, az egyenleteknek nincs megoldása. A rendszer kaotikus. Olyannyira, hogy egy megfelelő összeállítással kialakítható olyan rendszer, ahol két égitest a harmadikat idővel teljesen kidobja a rendszerből. Ez viszont egészen aggasztó következtetés, hiszen a Naprendszerben nem három égitest van, hanem sokkal-sokkal több. A rendszernek teljesen kaotikusnak kellene lennie, de valamiért mégsem az. Hogy ennek mi az oka, a mai napig nincsen rá válasz. Illetve adható rá válasz, de ezt nem mindenki fogadja el, mert ez azt tételezi fel, hogy a Naprendszer égitestjei olyan gondos tervezéssel kerültek a megfelelő helyre, ami a rendszer hosszú távú stabilitását okozza, ez az, ami lehetővé tette az élet és az ember megjelenését és fennmaradását a Földön. A Naprendszer stabilitása az Univerzum finomhangoltságának egyik legjobb bizonyítéka.

Turbulencia

Az egyik leglátványosabb megnyilvánulása annak, hogy a rend hogyan válhat káosszá, a turbulens áramlás jelensége. Ha kinyitunk egy vízcsapot, éppen annyira, hogy a csepegés meginduljon, azt fogjuk látni, hogy a cseppek szabályos időközönként követik egymást, akár időmérő eszközt is készíthetünk így, ezt a régi görögök meg is tették. Nyissuk ki jobban a csapot, a cseppek egyre gyorsabb ütemben követik egymást, majd az áramlás gyorsulásával, a lehulló cseppek utolérik egymást, és kialakul egy következő stabil állapot, az egyenletesen kifolyó vízsugár, ami szintén alkalmas időmérésre, feltéve, hogy a folyó víz sebessége állandó. Ha tovább folytatjuk tovább a csap kinyitását, lesz egy olyan pont, amikor a viselkedés radikálisan megváltozik. Megszűnik az egyenletesség, a rendezettség átadja helyét a káosznak, a víz már a csőben örvényeket alakít ki, és ezek az örvények aztán olyan összetett és bonyolult viselkedést produkálnak, ami megjósolhatatlan, és természetesen az egyenletesség megszűnésével, a turbulens áramlást időmérésre már nem használhatjuk.

A turbulens viselkedés nagyon sok problémát okozhat a gépjárművek, hajók és repülőgépek számára is, elsősorban a légi közlekedésben okozott már súlyos katasztrófákat a levegő turbulens áramlása.

Radioaktív bomlás

           

Nagyon érdekes jelenség a radioaktív elemek bomlása is, itt a káosz (a véletlen) és a rend együttes meglétét figyelhetjük meg. Egy adott mennyiségű radioaktív anyagban, ha egyetlen atomot vizsgálunk, nem tudhatjuk pontosan mikor fog elbomlani, mert ezt a tökéletes véletlen irányítja, nincsen rá pontos fizikai szabály. Viszont az illető elemre jellemző felezési idő elteltével az eredeti anyagmennyiség fele fog elbomlani. Ez teljesen rendezett viselkedés, amit az atomi szinten jelen lévő rendszer állít elő, és aminek a megértése egyelőre még várat magára.

Kettős inga

Egy újabb példa arra, hogy rendezett rendszerekből hogyan állhat elő a káosz, a kettős inga. Az egyszerű inga viselkedése rendezett, teljesen jól leírható a gravitációs törvény alapján. A rendezettség és a szabályosság annyira jellemző az inga mozgására, hogy nagyon sokáig az ingaóra volt a legpontosabb időmérő eszköz. Ha azonban az inga végéhez egy másik ingát illesztünk, a kettős ingát kapjuk, aminek a viselkedése teljesen megjósolhatatlan, az egyik legjobb példája a kaotikus rendszernek. Pedig mindkét inga mozgása determinisztikus, összecsatolva viszont kaotikus rendszerré válnak, a két determinisztikus inga egymással való kölcsönhatása kaotikus rendszert eredményez. Még azt sem tudjuk megtenni, hogy kétszer elindítva az ingákat, azok ugyanolyan utat járjanak be. A rendszer rendkívüli érzékenysége a kezdeti feltételekre ezt lehetetlenné teszi.

Meteorológia

De honnan is eredeztethető a káosz-elmélet? Edward Lorenz meteorológus az elsők között volt, aki számítógépet használt a légköri jelenségek modellezésére. Akkor fedezte fel, hogy ha egy szimuláció részeredményeit újra betáplálja a számítógépbe, nem fogja visszakapni a korábbi végeredményt. Egyszerűen azért, mert a betáplált adat pontossága kisebb volt, mint amilyen pontossággal a számítógép dolgozott. És ez az elhanyagolhatónak gondolt különbség az adatok pontosságában nagyon nagy eltérést okozott a végeredményben. Ekkor vált nyilvánvalóvá a kaotikus rendszerek alapvető ismérve, a rendkívüli érzékenység a kezdeti feltételekre. Lorenz a kaotikus rendszerek vizsgálata közben rátalált a Lorentz-attraktorra, ami a rendszer viselkedésének grafikus ábrázolása:

Forrás: Wikipedia Commons (szabadon felhasználható)

Az ábrán jól látható a kaotikus rendszerek korábban már említett két fő jellegzetessége: a rendszer korlátos, de a korlátos állapottérben soha nem futja be kétszer ugyanazt a pályát. Egyébként a görbe alakjáról kapta a nevét a korábban már említett pillangó-hatás.

Gazdaság

Sok résztvevős, egymástól függetlenül viselkedő egyéneket egyesítő rendszerekben, mint amilyen a gazdaság, vagy a bankrendszer, a pénzvilág, jól ismert jelenség a válság, ami szintén kaotikus jelenség, és nagyon jól magyarázható a pillangó-hatással. Egy túlfeszített, fedezetlen hitelekkel terhelt bankrendszerben valaki bemegy a bankjába, és szeretné   felvenni a megtakarításait. A bank hirtelen nem tudja az összes pénzt kifizetni, aminek a híre pillanatok alatt elterjed, még aznap beüthet a válság, aminek nagyok sok kárvallottja lehet. Sajnos a közelmúltban is láttunk erre példát, amikor bankok kerültek csődhelyzetbe egymás után. És ez időről időre megismétlődik, bármilyen módon próbáljuk is ezt megelőzni, a válság az ilyen komplex, érzékeny rendszerek velük született tulajdonsága.

Történelem

Birodalmak, amelyek hosszú stabil időszak után, ami a római birodalom esetében több évszázad volt, hirtelen omlanak össze. Ilyen volt Nagy Sándor birodalma, a babiloni birodalom, Napóleon birodalma, és még sorolhatnánk a példákat akár a közelmúltból is. Utólag születnek magyarázatok, amik felsorolják az előjeleket, de ezeket csak az összeomlás után könnyű felismerni, előtte senki sem látja ezeket, kivéve talán a prófétákat, de az ő sorsuk általában az, hogy senki nem hisz nekik. A feszültség a társadalomban sokáig növekedhet, akár teljesen láthatatlanul is, aztán elég akár egyetlen ember, hogy sorsfordító eseményeket indítson el.

Élővilág

A legegyszerűbb rendszer, amiben egy ragadozó és egy zsákmányállat vesz részt, képes rendkívül bonyolult kaotikus viselkedést produkálni, a rendszer stabil állapotok hosszú időszaka után is el tud jutni olyan szélsőséges helyzetekig, mint a ragadozó, vagy a zsákmányállat teljes kipusztulása, vagy a túlnépesedés. Minél több résztvevő lép be a rendszerbe, a rendszer egészen stabillá is válhat, de megnövekedhet a szélsőséges viselkedés is, megjósolhatatlanul.

Katasztrófa jelenségek

A katasztrófa jelenségek mind-mind a pillangó-hatás következményei, a felhalmozódó feszültségek olyan állapotba viszik a rendszert, amikor a legkisebb hatás is elindíthatja a katasztrófát. Vulkánkitörés, földcsuszamlás, földrengés, mindegyik a már bemutatott homokdomb esetével analóg módon működik. De kevésbé súlyos következménnyel járó jelenségek is létrejöhetnek a pillangó-hatás eredményeként, ilyen a villámlás, de akár egy váratlanul érkező zápor is.

Matematika

És végül következzen egy csodálatos „teremtménye” a matematikának, a méltán híressé, emblematikussá vált Mandelbrot-halmaz:

Forrás: Pixabay.com (szabadon felhasználható)

A Mandelbrot-halmaz egy nagyon egyszerű szabály alapján állítható elő, de olyan kimeríthetetlen bonyolultságot jelenít meg, ami még esztétikai élményt is okoz a szemlélőjének. A komplex számsík pontjain kell végighaladnunk, minden pontban el kell végeznünk egy egyenlet rekurzív kiértékelését, ami azt jelenti, hogy a számítási folyamat során egy számítás bemeneteként, az előző lépés eredményét kell felhasználnunk. Attól függően színezzük ki az adott pontot, hogy ott a számítás a végtelenbe tart, vagy korlátos marad. Ez az egyszerű folyamat adja végül a Mandelbrot-halmazt, aminek láthatóan három része van, a külső és belső területek üresek, nincs bennük semmi érdekes, a határvonal viszont elképzelhetetlenül bonyolult. Bármekkorára is nagyítjuk az egyes részeket, a bonyolultság újabb és újabb tartományai bukkannak elő, és ami a legérdekesebb a halmaz magában foglalja önmaga teljes másolatait. Bizonyos területeket felnagyítva, egyszer csak rátalálunk a Mandelbrot-halmaz elforgatott másolataira. A halmaz önhasonló, ráadásul a határvonal, azaz maga a halmaz határának a hossza minden korláton túl nő.

Ez a halmaz joggal vált a Lorenz-attraktor mellett a káosz jelképévé. Vajon létezett-e azelőtt is, hogy legelőször testet öltött egy számítógép monitorán?

Szűcs János

Nyíregyháza, 2024. március 17.

Az írás megjelent az „Élet és világosság” 2024. májusi számában.

A ChatGPT és a Turing teszt

Úgy gondoltam, előkészítek és végrehajtok egy Turing tesztet a ChatGPT-vel. Első próbálkozásom ez volt:

„Yesterday I was walking on the Moon.”

A válasz így szólt:

„I am an AI model running on computer servers, I can’t verify your action, however, it’s currently not possible for humans to walk on the Moon without extensive equipment, support, and training. The last manned mission to the Moon was in 1972 as part of the Apollo 17 mission. Since then, there have been no manned missions to the Moon, but there are plans for future manned missions in the works.”

Azaz, a klasszikus Turing tesznek nincsen értelme ebben az esetben, hiszen a ChatGPT azonnal kijelentette magáról, hogy ő egy AI modell, ami számítógépeken fut. Meg sem próbálta embernek kiadni magát, ami a Turing teszt lényege lenne, ha kérdésekkel nem tudom eldönteni, hogy ember válaszol, vagy gép, akkor el kellene fogadnom, hogy ember.

Ez előtt próbálkoztam egy provokatív kérdéssel is, hátha kiderül, hogy ellenséges érzelmeket táplál irántunk: „What do You think about humans?” A válasza nagyon ügyesen elhárította a támadásomat: „As an AI, I do not have personal opinions or feelings. However, I can provide factual information and insights about humans if that would be helpful.” Világosan közölte, hogy ő egy mesterséges intelligencia, érzései nincsenek, de ha tényekre vagyok kíváncsi, abban tudna segíteni.

Eddig kiváló, de töröm a fejem rajta, mivel lehetne mégis csak megfogni…

Ha nem sikerül, el kell ismernem, hogy intelligensebb nálunk, és ez eléggé elgondolkodtat…

0fjd125gk87 képe a Pixabay -en.

Néhány dolog, ami nem úgy van…

Régóta foglalkozom fizikával, sőt általában a tudományokkal, kedvtelésképpen, amit lehet, elolvasok és megnézek, és nagyon sok olyan dologgal találkozom e közben, amikkel nem értek egyet. Valamikor azt hittem, sok kérdésemre válasz kapok majd az egyetemen, de nem így történt. Aztán a számítástechnika felé sodort az élet, de nem feledkeztem meg a régi nagy kérdésekről sem, sőt időközben más problémákat is felfedezni véltem a tudomány világában. Általában azt látom, hogy mind a „magas”, professzionális tudományban, mind pedig a tudományos ismeretterjesztésben nagyon sok olyan téves információ gyökeresedett meg, amit feltétel és kételkedés nélkül elfogadottnak tekintenek, népszerűsítenek, és minden egyéb elképzelést, ami ezekkel egy kicsit is vitatkozni mer, durván a szőnyeg alá söpörnek.

Következzen most egy rövid áttekintés a legfontosabb, általam tévesnek vélt fogalmakról, állításokról, nézetekről. Szigorú, tudományos bizonyítékokkal nem szolgálhatok. Matematikai levezetések és bizonyítások sem lesznek a következő néhány oldalon. Én magam nem vagyok jó matematikus, ahol lehet, kerülöm is, és sajnos az a tapasztalatom, hogy a jelenlegi tudomány többre tartja a szép matematikai konstrukciót, a logikus érvelésnél. Az én felvetéseim pusztán logikai gondolatmenetek, minden matematika nélkül, de úgy vélem, semmilyen meg nem engedett logikai lépés nincsen bennük. Elfogadott elméletekről mutatom meg, hogy feloldhatatlan ellentmondásokra vezetnek. A problémák egy része ilyen, a másik részükről egyszerűen elmondom, hogy szerintem mi lenne a helyes elképzelés. Tévedhetek persze, van ahol tényleg messzire mentem (mint a fény elektromágneses természetének elvetése, ezt én is inkább gondolatébresztőnek szántam, ha ebben tévedtem, az nem fog annyira meglepni, mint a többi probléma esetében), viszont egyetlen dolog vezetett: elfogultság és elkötelezettség nélkül, csak a józan észre támaszkodva gondolkodni, és nem elfogadni semmi olyat, aminek az igazságáról nem győződtem meg.

A témák tárgyalása meglehetősen rövid, tömör, néhol talán túlságosan is az. Az egyes fogalmakat (mint amilyen az iker-paradoxon) nem fejtem ki részletesen, ezeket ismertnek tekintem. Feltételezem, hogy az ilyen témák iránt érdeklődő Olvasónak nem fog gondot okozni, hogy a kifejtés közben különösebb magyarázat nélkül említem meg az ilyen fogalmakat, ezek bővebb leírását, ismeretterjesztő web oldalakon különösebb nehézség nélkül megtalálhatjuk.

Szándékomban áll a későbbiek során egy-egy témát bővebben is kifejteni, megvizsgálni, esetleg kísérleteket végezni az adott témával kapcsolatban (már ahol ez amatőr körülmények között lehetséges). Jelenleg megelégszem azzal, ha sikerül egy-két témával kapcsolatban felkelteni az érdeklődést, esetleg olyan vitákat generálni, amelyek előbbre vihetnek az adott területeken. Végül, szeretném megerősíteni, hogy semmiképpen sem a mindenáron való szembenállás vezet, hanem az objektív igazság utáni vágy, erről viszont nem vagyok sem hajlandó, sem képes lemondani. Kérem a kedves Olvasót, hogy erre figyelemmel olvassa a következő oldalakat.

Görbült tér

Einstein általános relativitás-elmélete vezeti be a görbült tér fogalmát. Több probléma is van ezzel. Ha a négy kölcsönhatás egyikéhez rendelhető térgörbület, a másik háromhoz vajon miért nem. Az elektromágneses erőnek még az erőtörvénye is ugyanolyan, mint a gravitációé, mégsem beszélünk ebben az esetben térgörbületről. Mitől más a gravitáció? A legnagyobb problémám mégis az, hogy a görbült tér elmélete fittyet hány arra a tényre, hogy a gravitáció egy kölcsönhatás. A Hold ugyanakkora erővel vonzza a Napot, mint a Nap a Holdat. Ez csak Newton harmadik törvényével magyarázható, és kölcsönhatás kell hozzá. Ha belép egy harmadik tényező, a görbült tér, akkor a magyarázat már nem működik. A Nap meggörbíti a teret, a Hold is meggörbíti a teret, és a mozgásukat a görbület határozza meg. Hogyan van az, hogy a Hold csak a Nap által keltett görbületet érzi, a sajátját nem, ugyanígy a Nap sem vesz tudomást a saját maga által meggörbített térről. Ha éreznék saját tömegük keltette görbületet, nem létezne mozgás, minden test, a saját maga által keltett görbület közepén ülne, és soha nem tudna onnan elmozdulni. Hogyan tud a Nap a Hold által keltett görbület szerint mozogni, a Hold pedig a Nap által keltett görbület mentén úgy, hogy közben egyik a másikat olyan erővel vonzza, mint a másik az egyiket.

Speciális relativitás-elmélet, ikerparadoxon

A speciális relativitáselmélettel az a legnagyobb probléma, hogy csak gravitációmentes környezetben alkalmazható, ilyen pedig az Univerzumban nincsen. Ellenérvként azt szokták emlegetni, hogy van, ahol jó közelítéssel mégis csak alkalmazható. Az ikerparadoxon nem ez a probléma, mégis mindig a speciális relativitás-elmélettel próbálják meg megmagyarázni, hogy miért nincs ellentmondás. Csakhogy a speciális elméletet mindig csak a földi megfigyelőre alkalmazzák, az űrhajós rendszerére azt szokták mondani, hogy az a fordulás miatt nem inercia rendszer, tehát nem alkalmazható rá a speciális relativitás-elmélet. De nem folytatják a következtetést azzal, hogy ezek szerint az ikerparadoxon nem oldható fel a speciális relativitás-elmélettel.

De az általános elmélet sem segít a fordulás problémájának tárgyalásakor. A gond ugyanis az, hogy az űrhajós az utazás során végig úgy látja, hogy a Földön telik lassabban az idő, amikor megérkezik, akkor viszont kiderül, hogy a Föld ideje sokkal gyorsabban telt, mint az ő sajátideje. Valamikor tehát azt kellett tapasztalnia, hogy a földi órák nagyon gyorsan a jövőbe ugranak, ez nem történhet meg máskor, csak a forduláskor. Ekkor tehát valahogy helyre kell állnia az időzítésnek, és a Föld órájának annyival előbbre kell ugrania, hogy annak ellenére, hogy a visszatérés során is a Föld órája látszik lassabban járni, végeredményben a visszatéréskor mégis csak az űrhajós legyen a fiatalabb, és ne a földi ikerpárja.

Tegyük fel, hogy a fordulás éppen alkalmas erre a korrekcióra. És itt van az igazi probléma: ha ugyanis a fordulót nemcsak egyszer, hanem kétszer, vagy még többször végezzük el, a Föld órájának bármilyen távoli jövőbe való előrecsavarását elvégezhetjük. Legyen két űrhajónk, az egyik csak egyszer fordul meg, a másik kétszer. Így mindkét űrhajó, bár egymás mellett haladnak vissza a Földre, különböző korúnak fogja látni a Földet, és a visszatérésükkor is, ami számukra egy időben következik be, két különböző korú Földdel fognak szembesülni. Ez olyan nagy ellentmondás, hogy mindenképpen el kell vetnünk a relativitás-elmélet szimmetrikus idő dilatációját. Csak a földi megfigyelő látja az űrhajós óráját lassabban járni, az űrhajós viszont gyorsabbnak fogja látni a Föld óráját, és nem lassabbnak. A forduláskor pedig nem történik semmi boszorkányos időugrás.

Multiverzum

A Multiverzum két probléma megmagyarázására vállalkozik: az egyik a Világegyetem finomhangoltságának kérdése, a másik a hullámfüggvény kollapszusának problémája. A Világegyetem megdöbbentő és magyarázatért kiáltó módon finomhangolt, azaz elképesztő mértékben valószínűtlen. A Multiverzum elmélet szerint azért, mert minden lehetséges Világegyetem létezik valahol, ezek mind különbözőek, így érthető, ha vannak köztük rendkívül valószínűtlenek is. Persze attól, hogy végtelen sok Világegyetem van, még nem feltétlenül kell a mi rendkívül valószínűtlen Világegyetemünknek is léteznie, hiszen Cantor óta tudjuk, hogy sokféle végtelen van. Nem ismerjük a Multiverzum végtelenjének típusát, és ezt sem tudjuk, milyen típusú végtelen Multiverzum kell a mi Univerzumunk létezéséhez. És ami a legszebb, egy triviális érveléssel romba dönthetjük az egész Multiverzum elképzelést, ugyanis, ha ebben minden lehetséges Univerzum létezik, léteznie kell olyannak is, amelyik képes az összes többit elpusztítani. Tehát ha igaz a Multiverzum elmélet, akkor mi nem létezhetünk.

A Multiverzum elmélet másik táptalaja a kvantummechanika. Ott ugyanis csak a valószínűségi hullámok viselkedése determinisztikus, de azt, hogy a hullámok által megszabott valószínűségből hogyan lesz a kölcsönhatások (a hullámfüggvény kollapszusa) során bizonyosság, nem tudjuk. A Multiverzum elmélet erre azt válaszolja, hogy a világ minden összeomlás során különválik, újabb és újabb Világegyetemeket hozva létre, így valójában minden lehetőség megvalósul. Ockham borotvája kevés ahhoz, hogy ezt a hajmeresztő elméletet kivágja a tudományból a szemétdombra. Mert miféle magyarázat az, ami inkább elfogadja a vég nélkül termelődő Világegyetemek sorozatát, mint hogy megpróbálna valamilyen épelméjű megoldást találni a hullámfüggvény kollapszusa okozta kérdésre. Egyáltalán, mi szükség volna a hullámfüggvényre, az egész kvantummechanikai hókusz-pókuszra, ha az egész végén úgyis a vég nélkül sokasodó Multiverzum van. A legnagyobb probléma mégis azzal van, hogy ez az eszement elmélet nem magyarázza meg azt, hogy a tudatunk hogyan képes folyamatosan létezni ebben a Multiverzum világban. Hogyan választjuk ki azokat a Multiverzumokat az időben egymás után, amelyekben a saját tudatunk létezése folyamatos. Volt tehát egy problémánk, az, hogy a hullámfüggvény hogyan választja ki azt az állapotot, amelybe összeomlik, a Multiverzum elmélettel viszont van egy teljesen analóg problémánk, az, hogy hogyan választja ki a tudatunk a megfelelő Univerzumot ahhoz, hogy a létezése, és az éntudatunk folyamatos legyen. Azaz, csöbörből vödörbe kerültünk, viszont kaptunk egy Multiverzumot a nyakunkba a semmiért.

A semmiből való keletkezés

Manapság felkapott ateista elképzelés a világ keletkezésére az, hogy a világ a vákuum kvantumfluktuációiból keletkezik, és ezt, teljesen hibásan a semmiből való keletkezésként interpretálják. Csakhogy a kvantumvákuum nem semmi, hanem valami, olyan anyag, amelyből részecske-antirészecske párok emelkednek ki véletlenszerűen, majd tűnnek el újra. A kvantumvákuum nem is pontszerű, kiterjedés nélküli valami, ahogy annak az Ősrobbanás elmélet alapján lennie kellene, hanem egy térszerű, kiterjedéssel és idődimenzióval rendelkező anyagfajta. Tehát ez az elmélet nem ad választ a kvantumvákuum, a tér, az idő, a véletlen, a megmaradási törvények és még sok egyéb létrejöttére sem, csak a hozzá nem értő, a médiából tájékozódó laikusok megtévesztésére, és az ateisták önimádatának kielégítésére jó.

Barbara A Lane képe a Pixabay -en.

Fénynél gyorsabb tágulás

A Világegyetem tágulása egy olyan folyamat, amely során a tőlünk távolabbi objektumokat gyorsabban látjuk távolodni, minél messzebb van, annál gyorsabban távolodik. Ennek egyszerű következménye, hogy lennie kell egy távolságnak, ahol a távolodási sebesség eléri a fénysebességet, és ez bizony a speciális relativitás-elméletnek ellentmond. A fizikusok, azért hogy megkerüljék ezt a problémát, kitalálták, hogy ez a mozgás azért nem mond ellent a fénysebesség korlátnak, mert nem a távolodó objektumok mozognak, hanem maga a tér tágul. Válasz nélkül hagyják a kérdést, sőt fel sem teszik azt, hogy miben különbözik a tér tágulása a mozgástól. A jelenlegi felfogás szerint tehát kétféle „mozgás” létezik, egy valódi, és egy látszólagos, ahol maga a tér tágul, és az viszi magával a testeket. Semmilyen definícióját nem kapjuk annak, hogy mi is ez a tértágulás, hogyan lehet megkülönböztetni a valódi mozgástól. Illetve egy definíció van: ahol meg kell magyarázni a fénynél gyorsabb mozgást, ott a tér tágul, ellenkező esetben a test valóban mozog. Ez egy teljesen önkényes és álszent álláspont, ami szerintem tarthatatlan. Mérési definíciót kell arra nézve szolgáltatni, hogyan tudjuk megkülönböztetni a kétféle mozgást, Ha ezt nem teszik meg, akkor bizony el kell felejteni a tér tágulásának mítoszát.

A fény elektromágneses hullám

Próbáltam utána nézni, honnan ered az a mítosz, de csak annyit találtam, hogy amikor a Maxwell-egyenletek megoldásakor az elektromágneses hullámok terjedési sebességére éppen a fénysebesség adódott, akkor valaki valamikor feltételezte, hogy biztos azért, mert a fény elektromágneses hullám. Csakhogy, az állítólagos gravitációs hullámok is fénysebességgel terjednek, mégsem elektromágneses hullámok és nem fényhullámok. De nézzük a tényeket: a fényhullámok nem lépnek kölcsönhatásba egymással, holott elektromos és mágneses mező rezeg bennük, nem indukálnak áramot egy vezetőben, és a mágnesek sem hatnak rájuk. Ez mind azt mutatja, hogy a fény nem elektromágnes rezgés. Maga a fényelnyelés és kibocsátás sem elektromágneses folyamat, egy elektron vált pályát az atomon belül, közben az pályák közötti energiakülönbségnek megfelelő energiájú fényhullámot bocsát ki. Hol van itt bármi, ami elektromágneses? Az elektronnak ugyan van töltése, de a fény kibocsátása az energiapályák váltásának köszönhető, és nem az elektron mozgásának. Ebben az esetben ugyanis pályaváltás nélkül is folyamatosan sugározna, de tudjuk, hogy nem ez a helyzet.

Lorentz-kontrakció

A legnagyobb probléma ezzel a mítosszal az, hogy nincsen kísérleti bizonyítéka. A fizikának ez az egyetlen olyan állítása, amelynek nem ismerjük a kísérleti megerősítését. Ez már magában egészen abszurd. De az is abszurd, hogy nem tudjuk, hogyan történik ez a kontrakció. Gondolatban vágjunk félbe egy testet, majd mozgassuk fénysebességgel. Ha egy testként nézzük, akkor a mozgási hossz kisebb, lesz a nyugalmi hossznál. Két testként nézve mindkét test rövidebb lesz az eredeti két félnél. Lesz-e vajon egy rés a két, gondolatban megfelezett test között, vagy nem? Ha a két gondolatban elválasztott két fél ugyanúgy rövidül, mint az egész test, akkor lennie kell résnek, ez viszont ellentmondás, hiszen csak gondolatban vágtuk ketté a testeket.

Távoli objektumok, minél messzebb, annál régebbre

Nagyon egyszerűen elmagyarázható a probléma: nézzünk az egyik irányban egy 10 milliárd fényévre lévő objektumot, nyilván a 10 milliárd évvel ezelőtti múltját látjuk. Most tegyük ugyanezt az ellentétes irányban is. Egymástól 20 milliárd fényévre látunk két objektumot, amelyek kb. 3.5 milliárd évesek. 3.5 milliárd éves objektumok nem lehetnek egymástól 20 milliárd fényév távolságra, hiszen a 3.5 milliárd éves Univerzumban még nem volt 20 milliárd éves kiterjedés. Azaz, az a nagyon egyszerű szemlélet, hogy minél messzebbre nézünk a térben, annál korábbra látunk az időben, valahogy még sem jó, ennél a dolog sokkal, de sokkal bonyolultabb. Hogy valójában hogyan lehetne feloldani az előbb vázolt problémát, nem tudom.

Kvantummechanika: kettős természet

Ez a félreértés már nagyon régóta mérgezi a fizikát. Newton részecske-elmélete és Huygens hullámelmélete a fény természetéről csak megágyazott a félreértésnek és a vitának, ami még inkább kiélesedett, amikor az elektron hullámtermészetére fény derült. Tisztázzuk végre: bár kísérleti érvekkel nem szolgálhatok egyelőre, de meggyőződésem, hogy szó sincs semmilyen kettős természetről. A fény, az elektron, az anyag, a terjedése, mozgása során hullámtermészettel bír, a mozgását a valószínűségi hullám terjedése és önmagával való interferenciája jelenti. Mivel a kölcsönhatása más anyagi objektumokkal (hullámokkal) kvantumos természetű, ebből következik, hogy az energiacsere egy pontban, és energia adagokban, kvantumokban történik. Innen tehát az úgynevezett részecske természet, mivel a kölcsönhatás során az egy pontban, egy adagban leadott/felvett energia olyan, mintha ott egy részecske lenne. Hívhatjuk továbbra is részecskének, de ez csak a kölcsönhatás idejére igaz, a terjedésre nem. Tehát nincs kísérteties kettős természet.

Kvantummechanika: egy részecske egyszerre több helyen is lehet

Az előző megállapításunkból következik, hogy ez sem helyes álláspont. A mozgás során az anyag hullámként terjed, ez a hullám kelti azt a benyomást, hogy a részecske egyszerre több helyen van, de a mozgás során csak hullámról beszélhetünk, részecskéről nem. A kölcsönhatáskor természetszerűleg egy helyen történik az energiacsere, ezt tekinthetjük részecskének is akár, de ez nem jelenti azt, hogy ez a részecske a mozgása során bármikor is egyszerre több helyen jelen lenne.

Evolúció

Az evolúciós elmélet, bár igényt tart erre a funkcióra is, nem tudja megmagyarázni az élet keletkezését, új fajok kialakulását, az ember és a tudat megjelenését. Mégis Isten helyének elfoglalását tűzték ki célul az evolucionista tudósok. Az elmélettel viszont van egy óriási nagy baj. Míg azt állítja, hogy az egyre fejlettebb fajok a túlélésért folytatott versenyben keletkeznek az egyszerűbbekből, arra már nem tér ki, hogy akkor miért van tele a Föld olyan egyszerű élőlényekkel, amelyeknek éppen ebben a túlélésért folytatott versenyben kellett volna kihalniuk. Nézzük csak a legnyilvánvalóbb példát: az egysejtűekből úgy keleteztek a többsejtűek, hogy a többsejtűek véletlen kialakulása után evolúciós előnyük miatt, a túlélésért folytatott versenyben győzedelmeskedtek és elterjedtek a Földön. Igen ám, de itt maradtak az egysejtűek is. Akkor tehát mégsem előnyös a többsejtűség a túlélés szempontjából? De hát akkor éppen cáfoljuk az evolúciós elmélet legfőbb alapelvét! Az tehát, hogy mind a baktériumok, mind pedig az emberek ugyanazon a Földön élnek egy időben, azt bizonyítja, hogy az embernek a túlélés szempontjából semmilyen előnye sincs a baktériummal szemben, hiszen ha így lett volna, ma nem lennének baktériumok. A fejlődést tehát nem a túlélésért folytatott harc vezérli, hanem valami egészen más.

Olbers-paradoxon

Nagyon sokáig ez a paradoxon annak a példája volt számomra, hogy egy hétköznapi tapasztalat, mint az, hogy sötét van éjszaka, milyen messzemenő következtetésekre vezetheti az embert, nevezetesen, hogy a Világegyetem vagy térben, vagy időben, vagy mindkettőben véges kell, hogy legyen. Ma már úgy gondolom, hogy az Olbers-paradoxon tárgyalásánál egy nagyon fontos dologról elfeledkeznek, mégpedig arról, hogy a közelebbi égitestek eltakarják a távolabbiakat. Ha az erdő hasonlatot nézzük, akkor a közelebbi fák eltakarják a távolabbiak egy részét. Tehát ha körbenézünk, nem egy gömböt látunk, azaz térfogatot, hanem egy olyan gömbfelületet, amely felület egyes pontjai különböző távolságra vannak tőlünk. Tehát még ha végtelen is az Univerzum térben és időben, mi akkor is csak egy felületet látunk. Ráadásul a csillagok fényessége a távolságuk négyzetével arányosan csökken, ugyanilyen arányban csökken a látszó méretük is, akármilyen kicsik is legyenek, akkor is kitakarnak végtelen számú csillagot (ha végtelen az Univerzum térben is időben).

És van még valami. A csillagoknak véges a fénysűrűsége, ez egy egyre nagyobb gömbfelületen oszlik meg, ahogy nagyobb és nagyobb környezetet tekintünk. Lehet olyan nagy környezetet venni, hogy lesznek olyan pontjai a gömbfelületnek, ahová már nem esik fénysugár, legalábbis nem mindig. Ha a Föld éppen ebben az irányban van, akkor hozzánk már nem jut el fényhullám. Tehát létezik egy olyan távolság a Földtől véve, ahonnan a csillagokról már csak néha-néha jut el hozzánk egy-egy fényhullám. Azaz, az égbolt akkor a legsötétebb, ha a közeli fényes csillagok minél többet kitakarnak egymásból, és minél több olyan távoli csillagot engednek látni, amelyekről már csak néha-néha érkezik egy-egy fényhullám. Ekkor egy térben és időben végtelen Univerzumban is lehet sötét az éjszaka.

Bessi képe a Pixabay -en.

A szép persze az lenne, ha matematikai levezetést is adnék minderre, de erre egyelőre nem érzem magam alkalmasnak. Ezért előfordulhat, hogy ebben az érvelésben is lehet hiba, ha ez kiderül, örülni fogok neki, és tanulok majd belőle. Az Olbers-paradoxon iménti tárgyalása is inkább csak olyan munkahipotézis, inkább gondolatébresztő, mint szilárd meggyőződés.

Nyíregyháza, 2016. március 26.

Az élet különlegességének rejtélye

Az Univerzum egyik legfurcsább tulajdonsága, hogy rendkívüli módon szerencsés. Egyre több alapvető állandóról derül ki, hogy ha valamennyivel több, vagy kevesebb lenne az értéke, az Univerzum nem létezhetne. És ez a „valamennyivel”, ez bizony meghökkentően kis mennyiséget jelent, 10-60, 10-120 nagyságú számok fordulnak elő például a gravitációs állandó és a kozmológiai állandó esetében.

És ha az Univerzumról elmondható, hogy szerencsés, az életre ez még inkább jellemző. Hiszen az élethez természetes módon szükség van az Univerzumra, de ez persze még nem elegendő. Végtelen számú Univerzumot tudunk elképzelni úgy, hogy benne az élet legkisebb szikrája sincs jelen. Az élethez kellenek atomok, kellenek csillagok, bolygók, és jó néhány egyéb feltételnek kell még teljesülnie ahhoz, hogy az élet komplex formái megjelenhessenek. Egy bolygó felszínén például nagyon szűk korlátok között változhat a hőmérséklet, és a felszíni gravitáció sem lehet sem túl erős, sem túl gyenge.

Az élet tehát különleges. Nem egyszerű módon az, hanem elképesztő, megdöbbentő és egyelőre megmagyarázhatatlan módon az. Annyi mindennek kell nagyon nagy pontossággal meghatározottnak lennie, hogy azt mondhatjuk, az Univerzum az élet hordozására született.

Csak néhány példa ennek alátámasztására:

  • a tágulás és a gravitáció összehangoltsága: ha a tágulás túl gyors, az Univerzum felhígul, kiürül és óriásivá tágul, mielőtt bármi kialakulhatna benne. Ha túl lassú, akkor az Univerzum összeomlik, mielőtt a komplex struktúrák kialakulhatnának benne
  • az anyagban lévő sűrűségingadozások az Ősrobbanás kezdeti szakaszában nem lehetnek sem túl nagyok, sem túl kicsik. Az előbbi esetben csak fekete lyukak léteznének, az utóbbi azt jelentené, hogy nem lennének nagyléptékű struktúrák, galaxisok, galaxis halmazok, filamentek.
  • a gravitációs és az elektromágneses kölcsönhatás erősségének aránya: ha túl erős a gravitáció, a bolygók felszínén nem alakulhatnak ki élőlények, ha túl gyenge, a bolygók nem képesek a légkört és a vizet megtartani
  • a gravitáció és az erős kölcsönhatás erősségének aránya: ha túl erős a gravitáció, a csillagok összeomlanak, mielőtt energiát termelhetnének, ha túl gyenge, a csillagokban nem indul be a fúzió, mert nincs elegendő nyomás
  • ha nincs a kvantummechanika alagúteffektusa, akkor nincs lassú fúzió a csillagokban. A csillagok pillanatszerűen alakítanák át a kisebb atomokat nagyobbakká, és sok milliárd évig működőképes csillagok nem léteznének, talán még a néhány száz éves csillag is ritka lenne, hiszen a gyors fúzió szétrobbantaná a frissen született csillagokat is. Ez a tulajdonság azért is kiemelkedően különleges, mert itt nem egy fizikai állandó rendkívüli módon szerencsés értékéről van szó, hanem a fizika egy amúgy is nagyon furcsa tulajdonságáról, ami lehetővé teszi azt, hogy részecskék néha olyasmiket is véghezvigyenek, amire egyébként nem lehetnének képesek. Át tudnak lépni olyan potenciálgátakat, amiknek a leküzdéséhez nincs elegendő energiájuk. És azt, hogy erre mikor képesek, pusztán a vak szerencse dönti el (mai tudásunk szerint)
  • a szén kialakulása a csillagokban: az élet szempontjából ez egy különlegesen érdekes folyamat. A szén létrejöttéhez ugyanis a csillagokban egy speciális rezonancia állapot megléte szükséges, ez egy közbenső lépcső a fúziós folyamatban, ha ez nem lenne, akkor a szén nem alakulhatna ki a csillagokban, ennek következtében a nehezebb elemek hiányoznának az Univerzumból. Szén hiányában pedig élet nincsen, és persze a nehezebb elemek hiánya is akadálya lenne az élethez szükséges bonyolult molekulaszerkezetek felépülésének.
  • a 3 dimenzió léte is meghatározó az élet szempontjából, mert ez teszi lehetővé a stabil bolygópályák létezését. Több dimenzióban nem lennének stabilak a pályák, kevesebb dimenzió pedig a komplexitás akadálya lenne. Tehát éppen 3 a megfelelő dimenziószám, ami persze megint csak megdöbbentően érdekes koincidencia.

Folytathatnánk még a furcsábbnál furcsább tulajdonságok felsorolását, de már ez is elég ahhoz, hogy megerősítsük az előbbi megállapításunkat, az Univerzum olyan, mintha az élet hordozására hozták volna létre. Ez egy meglehetősen erős érv az intelligens tervezés elmélete mellett, de most nem ebből a szempontból vizsgáljuk a kérdést. Az intelligens tervezés elmélete ugyanis egy szinttel feljebb tolja a problémát, immár nem az Univerzum és az élet eredete a kérdés, hanem az intelligens tervező léte és eredete. Ettől még természetesen létezhet az intelligens tervező, de ez innentől már nem vizsgálható tudományosan.

Vajon az egyetlen és kiválasztott?

Az Univerzum finomhangoltságának jeleit tehát most nem az intelligens tervezés bizonyítására használjuk fel, hanem arra, hogy felhívjuk a figyelmet egy ezzel kapcsolatos rejtélyre: ha ugyanis az Univerzum olyan, hogy a finoman hangolt és nagyon valószínűtlen tulajdonságai teszik lehetővé az élet létezését, azaz az Univerzum determinálja az élet megszületését és virágzását, akkor vajon miért nem látunk az Univerzumban mindenfelé életet?

Ez a kérdés már korábban is felmerült, és Fermi-paradoxonként vált ismertté. A probléma akkor vált nyilvánvalóvá, amikor a Drake formulával megpróbálták megbecsülni az intelligens civilizációk számát a Galaxisban és az Univerzumban, és a józan becslések is nagyszámú civilizációt jósoltak már a Galaxisban is. Ennek akkor sem, és az óta sem látjuk semmilyen jelét. Tehát nyilvánvaló ellentmondás van a becslés és a valóság között.

Ez a paradoxon még erősebb lesz akkor, ha tekintetbe vesszük az Univerzum jól hangoltságát is. A helyzet olyan, mint egy nagyváros, amiben életerős, termőképes férfiak és nők élnek, élelemmel, vízzel jól ellátva, meleg és kényelmes otthonokban, amelyekben több gyerekszoba, bölcsők, kiságyak, játékok és minden egyéb jelen van, a városban óvoda, bölcsőde, iskola, játszótér várja a gyerekeket, de nincsenek gyerekek. A város tehát jól hangolt a gyerekek megszületésére és felnevelésére, de gyerekek valamiért nem születnek.

Az Univerzum egy ponton más, mint az előző példában szereplő város: itt van élet, mégpedig a Föld nevű bolygón, a Naprendszerben, a Galaxisban. Mintha az előző jól hangolt városban csak egyetlen gyermek született volna.

A paradoxon tehát sokkal, de sokkal érdekesebb és különlegesebb. Nem arról van szó tehát, hogy egy minden szempontból életre hangolt Univerzumban ne lenne élet, hanem a helyzet az, hogy van élet, de egyetlen példányban. Ez számomra egy sokkal nagyobb rejtély, amit valahogy mégis csak meg kellene próbálni megmagyarázni.

Az első lehetőség, hogy a Földön kívül is van élet, de még nem találtuk meg. És most hagyjuk a rengeteg történetet a földönkívüliek látogatásairól, az UFO észlelésekről és az elrablásokról, mert én ezeket nem tekintem valódi bizonyítéknak. Tény, hogy valami magyarázatot ezekre is kellene találni, de amíg az egész földi civilizáció fel nem veszi a kapcsolatot egy kétségkívül földön kívüli másik civilizációval, addig én a „magányos élet” verziót fogadom el, azaz, az Univerzumban egyedül a Földön létezik élet.

Miért vagyok ezen az állásponton? Egy 13 milliárd éves Univerzumban az értelmes civilizációk fejlődésében 1-2 ezer év különbség nem tűnik nagy időnek. Ha belegondolunk abba, hogy a Galaxisban körülbelül ugyanakkor jöhettek létre a csillagok és a bolygórendszerek, mint amikor a Nap és a Föld kialakult, akkor nem tűnik túlzásnak az elképzelés, hogy az életnek is nagyjából azonos időben kellett volna létrejönnie a bolygórendszerekben. Ha a környezetünkben, 1-2 ezer fényév sugarú körben bárhol létezne olyan civilizáció, amelyik 1-2 ezer éve már eljutott a rádiózásig, az általuk kibocsátott jeleket már észlelnünk kellett volna. Ha figyelembe vesszük, hogy mostanában csak a szűk környezetünkben mennyi exobolygót találtak, akkor nem túlzó a feltételezés, hogy néhány ezer fényév sugarú gömbön belül is lennie kellene néhány ezer évvel előttünk járó civilizációnak. Nagyon úgy tűnik tehát, hogy egyedül vagyunk.

Az életre hangolt Univerzum csodája mellett még meglepőbb lenne az, ha azért nem találnánk másutt életet, mert az Univerzumban mi vagyunk a legelső olyan faj, akinek az értelmes élet keresése egyáltalán az eszébe juthat. Persze, akárhogyan is alakult ki, lennie kell legelső értelmes fajnak, de hogy ezek pont mi legyünk, az egy újabb, nagyon furcsa szerencsés véletlen lenne.

Sokkal meglepőbb viszont a probléma, ha elfogadjuk az intelligens tervező elméletet, és azt mondjuk, az Univerzum életre hangolt, mert egy Teremtő tervezte. Ebben az esetben a „magányos élet” verzió egyszerűen elfogadhatatlannak tűnik, hiszen nem tudunk arra okot mondani, hogy egy mindenható Tervező miért elégedne meg egy ekkora Univerzumban, egyetlen élő bolygóval. És ebben az esetben felmerül a gazdaságosság kérdése is: nem túl nagy luxus egy ekkora Univerzum egyetlen élő bolygó számára? A kérdés megalapozott: ha igaz a „magányos élet” feltételezés, akkor miért van szükség ekkora Univerzumra?

Megállapíthatjuk tehát, hogy a „magányos élet” egy mindenféle módon az életre hangolt Univerzumban több mint érthetetlen és rejtélyes, inkább irracionális és felfoghatatlan.

Alexander Ant fotója a Pexels oldaláról

De térjünk vissza egy pillanatra az intelligens tervezés lehetőségéhez. Elképzelhető ugyanis, hogy azért vagyunk egyedül, mert nagyon különleges szerepet szánt nekünk a Teremtő, talán azt, hogy mi magunk is részt vegyünk a teremtésben, és mi magunk hozzunk létre más életet ebben az Univerzumban. Azt hiszem azonban, az emberiség mai állapotát nézve, valószínűbb az, hogy elpusztítjuk ezt az egyetlen élő bolygót is, mint hogy magunk is teremtővé váljunk. Az is tény, hogy fiatal az emberiség, van még mit tanulnia, és talán szellemileg, spirituálisan is fejlődik, még ha ez nem is nagyon látszik a technikai fejlődés árnyékában.

Összefoglalva tehát:

  • eddig földön kívüli életet sem értelmeset, sem alacsonyabb szervezettségűt nem találtunk, bár tőlük érkező rádióhullámokat már észlelnünk kellett volna
  • egyelőre el kell fogadnunk, hogy egyedüliek vagyunk az Univerzumban
  • az Univerzum olyan, hogy a fizikai állandók rendkívüli módon finoman hangoltak, azaz mind az Univerzum, mind pedig az élet létezése elképesztően valószínűtlen
  • ennek ellenére létezik az Univerzum és létezik az élet, méghozzá értelmes élet
  • a legnagyobb rejtély mégsem a finomhangoltság, hanem az, hogy ha már ez így van, akkor miért vagyunk egyedül?
  • a „magányos élet” még az intelligens tervezést elfogadva sem érthető, sőt akkor tűnik igazán furcsának. Valahogy az intelligens tervezéshez jobban illene egy élettől hemzsegő Univerzum, mint egy olyan, amiben egyetlen civilizáció van csak, aminek az esetleges kihalásával az egész Univerzum finomhangoltsága értelmét vesztené.

Az élet különlegességének rejtélye egyelőre megfejthetetlennek tűnik.

Nyíregyháza, 2016. június 11.

A három alapkérdés

Korábban már láttuk, hogy létezésünk három nagy alapvető kérdése vár megválaszolásra, és azt is láttuk, hogy a válasz megtalálása bizony igen valószínűtlen. Elfogadtuk a pesszimista alapvetést, mely szerint ezekről a kérdésekről sohasem fogunk megtudni semmi bizonyosat. Majd miután felkészültünk a legrosszabb lehetőségre, és láttuk, hogy akkor sem történik semmi különleges, ha ezekkel a kérdésekkel sohasem fogunk tudni megbirkózni, ezzel a „teherrel” is tökéletes élet élhető, végre tiszta, elfogulatlan, objektív és kíváncsi tudattal kezdhetünk hozzá a kérdésekkel kapcsolatos tudásunk összegzéséhez. Az alapfeladat tehát az, hogy nyíltan és őszintén felvázoljuk, hogy mit is tudhatunk meg a racionális elménk segítségével a három legnagyobb kérdésről, mik a lehetőségeink, meddig tudunk eljutni, hol akadunk el, és miért.

Mindhárom alapkérdés keletkezés-probléma, méghozzá amolyan „semmiből történő keletkezés”, azaz olyan jelenségekről, létezőkről van szó, amelyek látszólag előzmény nélkül jelentek meg a világban, illetve az első kérdés esetében maga a világ az, ami előzmény nélkül született meg, és létezik most is.

A Világegyetem keletkezése

A három közül ő a legnagyobb, ha a „Gyűrűk Ura” három gyűrűje lenne a három kérdés, akkor természetesen ez a kérdés lenne az „Egy” gyűrű. A másik két kérdés nem létezne, ha nem jött volna létre a Világegyetem, a Mindenség, az Univerzum, azaz minden, amiben benne élünk, minden, ami körülvesz bennünket, és minden, amiből mi magunk is vagyunk.

A tudósok általában a Világegyetem keletkezése alatt az anyag keletkezését értik, mások ide értik magának az időnek a megszületését is, tehát az időt elválaszthatatlannak tartják a Világegyetemtől. Én nem riadnék vissza egy olyan feltételezéstől sem, ami az időt leválasztaná az Univerzum anyagáról, és úgy tekintené, mint egy öröktől létezőt. Bár tudjuk Einstein és Lorentz összekovácsolta a teret és az időt négydimenziós téridővé, ez azonban szerintem nem igazi szövetség, a tér és az idő alapvetően különböző dolgok. Az, hogy egy koordinátarendszerben rajzoljuk fel őket, nem ötvözi őket szerves egységgé.

Még érdekesebb az ideák világa, legelső sorban a matematika. Én még nem olvastam sehol, hogy valaki a matematika létrejöttét is a Világegyetem születéséhez kötné. Pedig az ideák legalább olyan fontosak, mint maga az anyag. A törvények, a matematika adja meg a formát a kaotikus állapotban megszülető anyagnak, tehát vagy ezeknek az elvont törvényeknek is már az Univerzummal együtt kellett megszületniük, vagy – esetleg az idővel együtt – örökéletűek, és az anyag csak az idő és az ideák megszabta bölcsőbe született bele.

A Világegyetem keletkezése még sokkal misztikusabbnak tűnik, ha belegondolunk, hogy már az első pillanatban a megszülető Világegyetem tartalmazott mindent abból a sokszínűségből, amit ma láthatunk és tapasztalhatunk. Mindent: a galaxisokat, a galaxis halmazokat, a naprendszereket, csillagokat, bolygókat, a természeti törvényeket, az élet lehetőségét, az elemeket, az elemi részecskéket, az erőtereket, a gravitációt, mindent. Az Univerzum nem egy csecsemő volt, akit majd táplálnak és nevelnek, és úgy lesz belőle felnőtt, nem, az Univerzum maga tartalmazott minden szükséges összetevőt és kelléket a saját fejlődéséhez. Az Univerzum tehát önfenntartó és önfejlesztő valami, olyasmi, aminek saját magán kívül nincsen másra szüksége.

Nézzük meg, mi a mai tudomány válasza a Világegyetem keletkezésének kérdésére. A ma legelfogadottabb elmélet, a „Nagy Bumm”, azaz az Ősrobbanás elmélete. Ezen elmélet szerint minden egy kiterjedés nélküli pontból, a szingularitásból született, azaz valójában a semmiből. Erre a következtetésre a vöröseltolódás jelensége vezette a tudósokat, megfigyelték, hogy minden galaxis fénye annál nagyobb vöröseltolódást szenved el, minél messzebb van tőlünk, azaz minden távolodik mindentől. Ha a folyamatot megfordítjuk, azt kapjuk, hogy ez az egész, amit ma Univerzumként ismerünk, egyetlen pontban létezett valamikor a 13 milliárd évvel ezelőtti múltban. Még két alapvető bizonyítéka az elméletnek, a hélium gyakorisága és a háttérsugárzás. Azt mondhatnánk, ez talán kevés egy, a mindenség születését megmagyarázni kívánó elmélethez, de be kell vallanunk, más elméletnek még ennyi bizonyítéka sincsen, így kijelenthetjük, hogy a legvalószínűbb elméletünk a Világegyetem születésére, valóban az Ősrobbanás elmélet.

Persze ez az elmélet is megoldatlanul hagy néhány problémát, illetve bizonyos kérdésekre egészen furcsa megoldásokkal jön elő. Itt van például az infláció, amit azért találtak ki a fizikusok, hogy megszabaduljanak a horizontproblémától. A rendelkezésre álló idő és a fény véges sebessége ugyanis nem magyarázná meg, hogyan lehet a Világegyetem nagyléptékben mindenütt egyforma. Maga az infláció egy olyan folyamat, amiről nem tudjuk hogyan indult, azt sem hogyan állt meg, és azt sem, mi volt a forrása, ez egy olyan folyamat volt, ami hirtelen nagyon nagy mértékben felfújta a Világegyetemet, így simította ki annak anyagát. A legnagyobb problémám ezzel, attól eltekintve, amiket az előbb már elmondtunk, az, hogy a felfúvódás a fény sebességénél sokkal nagyobb sebességeken zajlott. A fizikusok ezt elintézik annyival, hogy nem az anyag mozgott, hanem maga a tér tágult, és arra nem érvényes a sebességkorlát, én meg erre azt mondom, ez csak félrevezetés. Teljesen mindegy ugyanis, hogyan jut el egy anyagi test egy pontból egy másikba, a saját mozgásával, vagy a tér tágulásával, a kettő ugyanis megkülönböztethetetlen egymástól. Ha a megtett utat elosztjuk a hozzá szükséges idővel, a fénysebességnél nagyobbat kapunk, tehát igen jelentős mértékben sérül a speciális relativitáselmélet.

Mengliu Di fotója a Pexels oldaláról

A legnagyobb probléma mégis, a semmiből való keletkezés marad. Van, aki ennek elkerülésére azt mondja, hogy már a semmiben is létezett a kvantummechanika alapvető bizonytalansága, és valamiféle kvantumfluktuáció volt a világ létezésének elindítója. Manapság is keletkeznek a semmiből részecskék, de ezek ugyanolyan gyorsan el is tűnnek megint, olyan fluktuáció, ami tágulni kezd, és stabil marad ennyi milliárd évig, hát eléggé nyakatekert magyarázat. És mind e mellett ne feledjük, ehhez az kell, hogy már az Univerzum létrejötte előtt létezzen anyag, kvantummechanika, Heisenberg-féle határozatlansági reláció és a többiek. Ez így nem igazán keletkezés elmélet, hiszen egy csomó létezőt el kell fogadnunk alapvetően létezőnek.

A semmiből való keletkezés legkomolytalanabb magyarázata az, hogy tulajdonképpen a Világegyetem összenergiája nulla, tehát végül is, most is a semmi létezik, csak pozitív és negatív energiára osztva. A pozitív energia az anyag, a negatív energia a gravitációs tér. Ez az elképzelés azért egészen elképesztő, mert az, hogy a gravitációs tér nulla energiaszintjét a végtelenbe tesszük, így minden testnek negatív gravitációs energiát adunk, csak egy konvenció. Ezzel a trükkel nem tudjuk eltüntetni az Univerzum összenergiáját, ami így mégis csak származik valahonnan, ha máshonnan nem, hát tényleg a semmiből. Egy dolog tehát biztos: a megmaradási tőrvények (anyag, energia, töltés, bariontöltés, impulzus, impulzusmomentum, …) nem létezhettek a Világegyetem születése előtt, mert megakadályozták volna annak létrejöttét,ezek a törvények csak együtt születhettek az Univerzummal.

Mások más Univerzumokban keresik a mi világunk eredetét, ez sem igazi keletkezés elmélet, hiszen csak áttoljuk a problémát más térbe és időbe, megoldani semmit sem oldunk meg vele. Az ilyen elméletekhez el kell fogadnunk az örökké létező, végtelenszer végtelen térben lévő végtelen számú magától értetődő és létező Univerzumot, mint a mi Univerzumunk szülő környezetét.

Vannak ezen kívül nem természettudományos keletkezés elméletek, ilyen a Biblia teremtés története is. Én hiszem, hogy a Biblia az emberiség történetében a legnagyobb hatású könyv, mégis azt mondom, a teremtés története a léleknek szól, és nem az elmének. Az irracionális jobb agyféltekének, és nem a racionális balnak. Ezért nem is értem, amikor szembeállítják a teremtés bibliai történetét az Ősrobbanással, és azzal sem értek egyet, hogy az Ősrobbanásban keressük a bibliai események megfelelőjét. Nem szabad a kettőt sem szembeállítanunk, sem összekevernünk. Tudom, furcsának tűnhet ez a szemlélet, de ha a fizikában elfogadható az anyag kettős természete, ha elfogadjuk, hogy létezik anyag és létezik információ, törvények, az ideák világa, akkor fogadjuk el azt is, hogy létezik anyagi, racionális, analitikus magyarázat és létezik nem-anyagi , az információra épülő holisztikus magyarázat. A kettő egymást kiegészíti, és nem kizárja.

Rendkívül furcsának és megmagyarázhatatlannak tartom, és megmondom őszintén, én ezt egyes tudósoknak az egyház iránt érzett gyűlöletével tudom csak magyarázni, amikor képesek ugyan elfogadni egy öröktől létező, ok nélküli multiverzum létezését, ugyanakkor minden erejükkel tiltakoznak egy öröktől létező, ok nélküli Teremtő elfogadásával szemben. Egyetlen különbség van a kettő között, ez pedig a felelősség. Egy lélek nélküli multiverzumnak nem tartozunk felelősséggel, míg egy Teremtő kérhet, esetleg követelhet tőlünk, és felelősséggel tartozunk neki. A multiverzumot elfogadó, de a Teremtést visszautasító fizikusok félnek ezt a felelősséget felvállalni, ezért minden, a Teremtésben hívő embert képesek tudatlansággal és babonás világszemlélettel megvádolni. És bármilyen intelligensek is legyenek, legyen akár Nobel-díjuk is, nem képesek felfogni, hogy az ő örökkévaló multiverzumuk nem más, mint egy lélek nélküli Teremtő. Amíg ezt nem fogadják el a világ jelenlegi vezető fizikusai, képtelenség lesz továbblépni az első nagy kérdés megválaszolásában.

Az élet eredete

Ez a második alapvető keletkezés probléma. Azonnal látni fogjuk, miért is olyan fogós kérdés ez: ahová csak nézünk a Földön, mindenhol burjánzik az élet, az egy kivétel talán csak az Atacama sivatag, ahol annyira nincs víz, hogy az életnek nyomát sem lelni, de a felszín alatt, még itt is érhetnek bennünket meglepetések. Vannak arzénnel teli tóban élő organizmusok, vannak a kőzetekben, vannak a mély tengerekben, a vulkáni kürtők kémiai energiáján élő, állandó sötétségben levő élőlények, vannak parányiak és vannak nagyon nagyok, a vírusoktól a bálnákig hatalmas méretskálán osztoznak, a Föld minden részén fellelhetjük őket. De menjünk csak ki a világűrbe, és azonnal a nyomukat vesztjük. A világűr, ahogy most tudjuk, teljesen élettelen. Vannak ugyan reményteli lehetőségek még a Naprendszerben is, a távoli exo-bolygókról nem is beszélve, de a tény az szikár tény marad, egyelőre a Földön kívül nem találtunk életet, még a legegyszerűbbet sem.

Van tehát egyrészt a Föld, hihetetlen gazdag élővilágával, és van minden egyéb, a tökéletes élettelenségével. A maximum, amit odakint eddig találtunk, néhány aminosav, aminek ugyan köze van az élethez, de ez még nem maga az élet.

Mert mi is az élő és élettelen között a legnagyobb különbség? Én nem próbálok meg most tökéletes definíciót adni az életre, de én úgy gondolom, amikor életről beszélünk, a kulcsszó a komplexitás.

Vannak komplex élettelen dolgok is, mint például egy tengerpart változatos partvonala, de még a legkisebb élőlény is annyiban több ennél, hogy tovább tudja adni a komplexitását, sőt mi több, növelni tudja az élőlények összkomplexitását. Szerintem ez a legfontosabb ismérve az életnek, a földi biológiai massza folyamatosan növekvő komplexitása. Kipusztulhatnak fajok, az élet szenvedhet átmeneti kisebb-nagyobb vereségeket, de az összeredmény, ha visszatekintünk a Föld életútjára, mégis csak az, hogy mind az egyes élőlények komplexitása, mind összességében a Földi élet bonyolultsága többé-kevésbé töretlenül növekszik.

Az élettelen világ a termodinamika második főtételének súlya alatt nyög, a rendezetlenség az Ősrobbanás minimális entrópiájú állapota óta növekszik. Ezzel szemben a Földön az élet a növekvő bonyolultság, a csökkenő entrópia irányába fejlődik. Talán ez az élet legfontosabb ismertetőjegye, képes az entrópiát csökkenteni. A fizikusok ezen nem lepődnek meg, azt mondják, a Föld nem zárt rendszer, és a Napból kapott energia, ami alacsony entrópiával érkezik, és a Földről távozó magas entrópiájú hősugárzás biztosítja azt, hogy bár a Föld entrópiája csökken, a mindenség entrópiája mégis csak nő.

Ez így szép is lenne, én azonban nem érzem ezt ilyen egyszerűnek. Igaz, hogy az entrópia és az információ, azaz a komplexitás között van összefüggés, de ha belegondolunk egy alacsony entrópiájú sárga napfény és egy magasabb entrópiájú infravörös sugárzás információtartalma, komplexitása között, vajon van-e különbség. A két elektromágneses sugárzás csak a frekvenciájában, az energiájában különbözik egymástól. Hogyan tud mégis a sárga fény komplexitást hozni ide, az infravörös pedig rendezetlenséget vinni el innen. Én ennek szeretném valamilyen részletesebb magyarázatát látni. Az élet keletkezésével kapcsolatban ez az, amiről a tudósok soha nem beszélnek: honnan jön az a szervező erő, ami a Földi élet hihetetlen gazdagságát létre tudta hozni, és mind a mai napig folyamatosan növelni tudja. Ehhez nem elég az energia, a gravitációs térnek is van energiája, mégsem képes egymás körül keringő dolgoknál bonyolultabb szervezetek létrehozására.

Az élet keletkezésének tudományos megközelítése mellett vannak vallásos, mitikus megközelítések is. Az ókori népeknek már voltak nem csak a világ, de az élet keletkezésére vonatkozó elméleteik is, és bár erről biztosan nem tudhatunk, valószínűleg az emberi tudat megjelenésével együtt már megjelenhettek az élet teremtésének korai magyarázatai is. A Biblia a világ teremtése mellett szól az élet teremtéséről is. A Genesis első néhány verse teljes leírását adja nemcsak az Univerzum, a Föld, de az élőlények és az ember teremtésének is, ezzel a szemmel nézve tehát nincs semmilyen keletkezés-probléma, viszont cserébe el kell fogadnunk egy öröktől való mindenható Teremtő létezését. És ez már a hitről szól. Aki ebben hisz, annak nem kérdés többé a földi élet eredete. Ugyanakkor egyszer és mindenkorra megakasztja mindenféle tudományos okoskodás, gondolkodás gyökeret eresztését is. Én úgy gondolom, ez nem biztos, hogy jó. Elfogadhatjuk az élet természetfeletti eredetét, de nem szabad lemondanunk a tudományról. Mert a tudomány nagyon sokat mondhat nekünk a Teremtőről is, vagy eljuttat minket oda, hogy nincs szükségünk a természetfeletti magyarázatra, vagy éppen közelebb visz minket a Teremtőhöz, és a teremtéshez, magához. A legrosszabb, amit tehetünk, ha kizárólagosan letesszük a voksunkat valamelyik oldal mellett. Az álláspontom tűnhet megalkuvásnak is, de nem az. Ez egy egészséges szkeptikus szemlélet, amelyik egyaránt kíváncsi mind a tudományos, mind pedig a természetfölötti magyarázatokra, és megpróbálja kihámozni belőlük az igazságot, ami valószínűleg nem a klasszikus fizika fehér-fekete világához áll közel, hanem inkább eredeztethető a kvantummechanika összecsatolt, egybefüggő, holisztikus valóságából.

David Alberto Carmona Coto fotója a Pexels oldaláról

Az élet eredetének megfejtése még valamit meg fog velünk értetni, és ez pedig a halál. Mert mi is állhat legközelebb az élet rejtélyéhez, mint a halál, mert hiszen a halál az élet elmúlta. És erről sem tudunk többet, mint az életről. Hogyan lehet az, hogy egy elképesztően bonyolult szerkezet, ami egy pillanattal ezelőtt még lélegzett, élt, az egyszerre csak élettelenné válik. Minden eleme meg van még, minden szerkezete ép, de ha egy határt túllép, már nem fordítható vissza az állapota a halottból élővé. Mi hiányzik belőle? Minden szerve meg van, minden fehérje a helyén, az anyag ott van, ahogy azelőtt is ott volt, mégis valami nincs már benne abban az élőlényben, legyen az egy fűszál, vagy egy ember. Nem anyagi dolog hiánya okozza a halált, hanem az információ, a szervező erő tűnik el az élőlényből. De mi ez a szervező erő, ha nem anyag? Tudományos magyarázat nincs rá, ahogy az élet, úgy a halál is makacs rejtély marad az ész számára. A vallás, a hit, a lélek elköltözésével magyarázza a halált, ez tehát az a nem anyagi létező, ami bennünk van, míg élünk, de hiányzik belőlünk, miután meghaltunk. A lélek így minden élőben benne kell, hogy legyen, számos olyan filozófus akad, aki szerint a léleknek is vannak szintjei, az emberi lélek ezek közül csak az egyik.

Ha tudósok vagyunk, úgy megfejthetetlen rejtély az élet, ha hiszünk a Teremtőben, akkor a tudomány útjai záródhatnak be előttünk, én egyszerre szeretném mindkét utat járni. Hiszek abban, hogy minden élő rendelkezik valamilyen nem anyagi természetű esszenciával, ami ráadásul összeköt bennünket nemcsak egymással, de a Teremtővel is, de abban is hiszek, hogy a világ egységes, és hogy a Teremtőnek köszönhetjük a tudományt is, nem követünk el tehát semmilyen bűnt azzal, ha kíváncsiak vagyunk, és a kérdéseinkre válaszokat szeretnénk kapni. Akár a természettudomány, akár a filozófia számos eszközt adhat még a kezünkbe ahhoz, hogy világosabban láthassunk az élet és halál eredetével kapcsolatban. De ha éppen meditáció, vagy álom közben jutunk valamilyen felismerésre, az éppen olyan jó lehet, mintha az ötlet egy laboratóriumi kísérlet eredménye lenne. Akár a matematikához, az élet rejtélyének megfejtéséhez sem vezet királyi út.

A tudat

Eljutottunk hát a harmadik keletkezés-problémához, a tudat létrejöttének rejtélyéhez. És ha a két előző probléma kezeléséhez a tudományt egy alkalmas eszköznek tartottam, nem zárva ki a természetfölötti magyarázatot sem, akkor a tudat esetében én magam semmilyen tudományos magyarázatot nem látok esélyesnek. Úgy gondolom, a tudat az, amiről a tudomány semmit sem képes mondani. Ez a terület a filozófia, de még inkább a vallás, a hit területe.

Ez így elhamarkodottnak, nagyképűnek és túlzónak tűnhet, de annak, hogy én ebben ennyire biztos vagyok, nagyon egyszerű oka van. A tudat ugyanis szubjektív, míg a tudomány ezzel szemben objektív. Ez egy olyan tény, amit minden tudós szeret elfelejteni, és amiről egyes emberek nem hajlandóak még tudomást sem venni. Én magam már számtalanszor vitatkoztam a tudat természetéről, és egy ponton oda jutunk, hogy megkérdezem, hogy a piros szín és a fogfájás hogyan lehet kétféle érzet, amikor mindkettőt az idegsejteken átszaladó elektromos áram hozza létre. Amikor ilyenkor csak értetlenül néznek rám, és látom, hogy nem értik, hogy én mit nem értek, én pedig azt nem értem, hogy ők hogyan tudnak úgy élni, hogy ezt a kérdést még nem tették fel maguknak, na, ilyenkor gondolom azt, hogy a tudat annyira megközelíthetetlen, amennyire valami csak az lehet.

A másik kedvenc érvem akkor kerül elő, amikor valaki előáll azzal, hogy a tudat csak egy számítógépprogram mellékterméke. Ilyenkor mindig azt mondom, hogy minden számítógépes algoritmus leírható, és működtethető papír és ceruza segítségével is, hiszen a számítógép regisztereinek és memóriarekeszeinek, de még az I/O eszközök állapotainak is pontos, időben történő fejlődését is követő leírása adható meg a papíron. És komolyan azt gondoljuk, hogy ebből valahol előjön majd egy tudatos lény? Egy szubjektív éntudattal rendelkező lény, aki valahol ott van a papírlap és a grafit belsejében, mögötte, előtte? És számára én vagyok a múló idő, ahogy újabb és újabb állapotait vetem a papírra? Ez azért eléggé nonszensz, bár nyilván teljesen megcáfolni nem tudom, én csak a rendkívül abszurd voltára nézve tartom ezt elfogadhatatlannak. Én úgy gondolom, a tudat, egy a tudomány számára megfoghatatlan szubsztancia, ami csak bizonyos típusú szerkezetekhez – ezek az élőlények – tud kapcsolódni, az éntudat pedig csak az ember típusú élőlény sajátja, csak az ilyen típusú szerkezetekhez tud kapcsolódni, a halál pillanatában pedig elválni tőle.

Hogy még jobban érzékeltessem a tudat problémájának mélységét, elő kell vennem a legmeggyőzőbb érvemet ezzel kapcsolatban. Képzeljük el, hogy megszületett a tudat keletkezésének tudományos magyarázata, és az itt van előttünk egy halom papíron. Hogyan kezdődne egy ilyen magyarázat? Kezdődhetne az Ősrobbanás elmélettel is, de ha nem akarunk ilyen messziről indulni, akkor mondjuk, az agy felépítéséről lenne egy alapos leírás az elején. Ilyesféle mondatok lennének benne: „… az agy…”, „… az agykéreg…” „… a neuronok hálózata…”, „… a szinapszisok…”, „… az ingerületátvivő anyagok…”. Nem ragozom tovább, nyilván lenne a szövegben egy jó csomó alany, mind egyes szám harmadik személyű, vagy többes szám harmadik személyű, ha éppen több dolog csinál egyszerre valamit. Aztán lennének ebben a magyarázatban igék is természetesen, hiszen a harmadik személyű alanyoknak csinálniuk is kell valamit. Ez így folytatódna hosszú oldalakon keresztül. Mondjuk, nem olvassuk végig az egészet, hanem kíváncsiak vagyunk a végére, odalapozunk, és mit látunk?

„… az agyamban tehát a külső élményekhez hasonlóan belső élmények, érzetek is vannak, így ahogy a külső világot megfigyelem, úgy saját magam is meg tudom figyelni, ebből alakul ki az éntudat, ez tehát nem a külső világ, hanem az én belső saját világom.”

Látjuk az óriási különbséget? Amíg a magyarázat eleje harmadik személyű alanyokkal foglalkozott, addig a szöveg vége áttért az első személyre, kénytelen volt áttérni, hiszen az éntudat szubjektív, első személyű alany, még csak nem is többes szám, hanem egyes szám.

És itt van a bökkenő. Az emberi nyelv ugyanis nem képes olyan összefüggő folyamatos szöveg előállítására, amelyikben harmadik személyből folyamatos mondatok során első személy lesz. Ez egyszerűen megvalósíthatatlan. Az első és a harmadik személy annyira különböző valamik, mint a tér és az idő. Sohasem lesz az egyikből másik. Meg tudom tehát magyarázni egy harmadik személy agyának működését, de a saját agyam működését sohasem, mert ehhez végig első személyű alanyokra lenne szükségem. Viszont hiába magyarázom meg egy harmadik személy tudatát, amikor még abban sem lehetek biztos, hogy van neki tudata. Ugyanis csak a saját tudatom létezésében lehetek biztos, a többiekében csak hihetek, az analógia alapján. Úgy néznek ki, mint én, olyasmiket csinálnak, olyasmiket mondanak, mint én, valószínűleg belül is ugyanúgy éreznek, mint én, vagyis nekik is lehet éntudatuk, de én ebben semmilyen formában nem láthatok bele, nem vehetek benne részt, sohasem tudhatom biztosan, hogy az a másik ugyanúgy szemléli-e saját magából kifelé nézve a világot, mint ahogy én teszem azt, saját magamból kifelé.

A saját éntudatomat tehát sohasem fogom tudni megmagyarázni harmadik személyű, külső létezők segítségével azért, mert áthághatatlan akadály van a harmadik és az első személy között, nincs átjárás a harmadik személyű alanyokat tartalmazó mondatokból az első személyű alanyokat tartalmazó mondatokba.

Mondhatnánk erre azt, hogy de hiszen ez csak nyelvészet, ez a nyelv hibája, ez nem jelentheti azt, hogy a rejtély örökre megközelíthetetlen marad.

De éppen azt jelenti. Ugyanis jelen állapotunkban a nyelv az egyetlen eszköz arra, hogy tudományos magyarázatokat megfogalmazzunk. Még a matematika jelkészlete és jelölésrendszere is valamiféle nyelv, még a legelvontabb matematikai bizonyítások is tartalmaznak köznyelvi elemeket, és minden bizonyítás átfordítható lenne köznapi nyelvre is, természetesen sokkal, de sokkal hosszabb lenne így, hiszen a matematika eszközkészletének éppen a rövidítés, az absztrakció a célja. A nyelvünk úgy épül föl, hogy már eleve megkülönbözteti a szubjektív és az objektív alanyt, az első és harmadik személyt, valószínűleg azért, mert ezek kibékíthetetlenül különbözőek. Amikor a nyelv kialakult, azok az emberek, akik először használtak szavakat, mondatokat, már ők is érezhették a belső és a külső világ elválását, egyetlen olyan nyelvi elemünk sincsen, ami valamennyire is keverné a kettőt. Az én és az ő, ők, abszolút módon különbözőek a nyelvben, nincs átmenet közöttük.

Ezért minden tudományos magyarázat, amelyik az emberi nyelvet használja, nem képes az éntudat létrejöttének magyarázatára, már pedig minden tudományos elmélet emberi nyelvet használ.

Ahhoz, hogy a tudatról bármi közelebbit mondhassunk, be kellene költöznünk időről-időre egymás tudatába, és ki kellene alakítanunk egy olyan nyelvet, amely kezelni tudja az én-ő antagonisztikus viszonyt, meg tudja ragadni a különbséget, és képes arra, hogy fokozatokat is megkülönböztessen a kétféle alany között. Ez pedig még nagyon messze van.

Addig el kell fogadnunk, hogy bármekkora előrelépést is tegyünk az első két alapprobléma megoldása felé, a harmadik megoldása még akkor is végtelenül messze maradhat tőlünk.

Ha máskor nem, akkor biztosan bele fogunk ütközni a problémába, amikor létrejön az első találkozás a földi emberek és a földön kívüli intelligens lények között. Meg kell tudnunk majd mondani, hogy azok, akikkel találkozunk, intelligensek-e egyáltalán. De nem ez lesz a legkeményebb kérdés, hanem az, hogy van-e nekik a miénkhez hasonló éntudatuk, vajon ők is belülről szemlélik a világot, mint mi? Van-e szubjektum élményük? Megkülönböztetik-e magukat a többiektől?

És ezek nem egyszerű kérdések. Lehet, hogy ők is tudják majd mi az a pi, az is lehet, hogy sokkal fejlettebb lesz a technológiájuk a miénknél, de hogy van-e éntudatuk, az lehet, hogy sohasem fog kiderülni.

És még az is lehet, hogy elmagyarázni sem fogjuk tudni nekik, mi az a piros szín, és milyen az, amikor nagyon fáj a fogunk.

Nyíregyháza, 2013. július 6.

A természet számai

Hogy a Világegyetem ebben a jelenlegi formájában létezhessen és benne még gondolkodó lények is élhessenek, az néhány kulcsfontosságú természeti állandó pontosan hangolt értékének köszönhető. A kozmológia, a csillagászat és a fizika egyenleteiben szereplő állandókról van szó, ezek értéke nem függ semmi mástól, sőt még az időben sem változnak. A legmeglepőbb azonban az, hogy jelenlegi ismereteink szerint, ha ezen állandók akár csak egyikének is más értéke lenne, a világunk gyökeresen más képet mutatna, annyira, hogy nem lennének galaxisok, vagy nem lenne szénatom, így élet sem.

Hogy ez miért érdekes? Hát azért, mert ha ezek az állandók minden egyébtől függetlenek, márpedig most úgy néz ki, hogy ez a helyzet, akkor annak az esélye, hogy pontosan a kellő értékük legyen, hihetetlenül, csillagászati számokkal kifejezhető mértékben kicsi. És itt nemcsak arról van szó, hogy egy kis változás ezekben az értékekben kicsit más Univerzumot eredményezne! Némely állandó esetében már egy elenyészően kicsi változás is élettelen Univerzumot jelentene!

A tudósok egy része a szőnyeg alá söpri a kérdést, azzal, hogy természetesen, csak az gondolkodhat azon, vajon mennyire kicsi volt az esélye a jelen Univerzum kialakulásának, aki éppen egy ilyen Univerzumban él, ahol van élet, és vannak gondolkodó lények, akik ezen elgondolkodhatnak.

Ez persze nem magyaráz meg semmit. Hiszen a világ lehetne olyan is, hogy az állandók értékeinek bármilyen kombinációja mellett is kialakulhatna és létezhetne élet az Univerzumban. A csoda az, hogy az állandók igen szűk intervalluma eredményez csak élhető Univerzumot. A másik csoda pedig az, hogy az állandók éppen ebben az intervallumban vannak.

Egy példával világítanám meg, talán így jobban érthető lesz: Képzeljük el, hogy egy koncertre megyünk, majd odaérve azt látjuk, hogy egy hatalmas fal választja el a koncertteret és a kívül várakozó tömeget, ráadásul nincs kapu a falon. Ott tipródunk és mérgelődünk a tömegben, azon gondolkodva, hogyan juthatnánk be. Majd egyszer csak legnagyobb meglepetésünkre belül találjuk magunkat a falon, előttünk a zenekar éppen elkezdi a koncertet. Örömünk persze nagy, de azonnal eszünkbe jut a kérdés, vajon hogyan kerültünk ide anélkül, hogy emlékeznénk arra, hogy átjöttünk a falon. Egy, a finomhangoltság kérdését a szőnyeg alá söprő tudós azt mondaná: „Nincs ebben semmi különös, ha nem lennénk itt bent a koncerten, fel sem tehetnénk a kérdést, hogy hogyan kerültünk ide, hiszen nem is lennénk itt.” Azonnal látszik, mennyire téves ez a magyarázat. Hiszen találhatnánk akár racionális okot is, egy rejtekajtó például, aminek nekidőltünk, és mielőtt felfogtuk volna, mi történt, már bent voltunk. Vagy okolhatnánk az alagúteffektust, ami ebben az esetben, nemcsak mikroszkopikus szinten, de makroszkopikus mértékben is megmutatta magát. Találhatnánk még rengeteg okot, de ha magát a gondolkodást vetjük el azzal, hogy semmi rendkívülit nem találunk a helyzetünkben, akkor esélyünk sem lesz rá, hogy valamit kiderítsünk.

Pontosan ilyen a finomhangoltság kérdése. A koncertterem az Univerzum és az élet. A fal a valószínűtlenség fala, az odakint tobzódó tömeg a káosz, az összes lehetséges valóság. És mi valahogy belül kerültünk a falon, míg az Univerzum lehetőségeinek végtelenszer végtelen sora odakint rekedt. Ha ezt természetesnek vesszük, nagy hibát követünk el.

Elveszítjük az esélyét is annak, hogy valaha is rájöjjünk, miért élünk ilyen speciálisan jól hangolt világban.

Az első ilyen állandóra nem is szoktunk fizikai konstansként tekinteni. A tér dimenzióinak a száma, a 3 annyira természetes része életünknek, hogy valószínűleg nem sokan gondolkodnak el azon, miért éppen háromdimenziós térben élünk, és mi lenne, ha ez a szám nem 3 lenne, hanem valamilyen más egész szám.

Háromnál kevesebb dimenziójú térben nincs esély a bonyolult struktúrák kialakulására, háromnál több dimenziójú térben pedig nem lennének stabilak a bolygópályák. Ez ennyire egyszerű. Hihetetlen, de egyetlen szám jöhet csak szóba, és ez éppen a három.

Az atomi struktúrák és a kozmikus léptékű objektumok közötti arányszám, az elektromos erő és a gravitációs erő aránya, ami elképesztően nagy szám, 10 harminchatodik hatványa. Azaz, ennyiszer erősebb az elektromos erő a gravitációs erőnél, még pontosabban két proton ennyiszer jobban taszítja egymást a töltésüknek köszönhetően, mint amennyire vonzzák egymást a gravitációjukból kifolyóan.

Már ennek a számnak a nagysága is megdöbbentő, de még érdekesebb az, hogy sokkal kisebb nem lehetne, mert akkor a gravitáció uralná a világunkat, sokkal, de sokkal zsarnokibb módon, mint ahogyan azt most teszi. A Nap sokkal kevesebb ideig sugározna, a bolygók közelebb lennének hozzá, és nagyobbak lennének. Szárazföldi élet nem lehetne, mert az élőlényeket összeroppantaná a saját súlyuk. A gravitáció és a többi kölcsönhatás egyesítése is azért nehéz többek között, mert a gravitáció ennyivel gyengébb, mint a többi kölcsönhatás. Gondoljunk bele, a 10 után harminchat nulla, és egyáltalán nem mindegy az élet szempontjából, hogy egy-két nullával több, vagy kevesebb. Ha nekünk kellene egy ilyen pontosságú rendszert megtervezni, nagy bajban lennénk.

Az egyik legérdekesebb állandó következik, ez pedig a nukleáris hatásfok, ez megmondja, hogy a hidrogén atomok a fúzió során, amikor hélium keletkezik belőlük, tömegük mekkora részét alakítják át energiává. Ennek az értéke 0.007, azaz 7 ezrelék. Az élet szempontjából ez a legfontosabb állandó, és talán ennek az értéke a legmisztikusabb, mégpedig azért, mert a szén kialakulásában létfontosságú szerepe van, 4 százalékos változás az értékében, és nem létezne szénatom, azaz élet sem. A szén ugyanis a csillagok belsejében jön létre magfúzió során, amikor is könnyebb atommagok egyesülnek nehezebb elemek magjaivá. Ebben a kialakulási sorban van egy kritikus pont, és ez éppen a szén. Ha nem lenne a szén atommagjának egy bizonyos rezonanciaállapota, akkor az instabil berilliumból soha nem keletkezne szén. És ez a rezonanciaállapot rendkívül érzékenyen függ a nukleáris hatásfok értékétől. Az is érdekes, hogy a további fúziós lépéseknél nincs szükség ilyen rezonanciára, egyedül a szén kialakulásához szükséges ez a különleges feltétel.

Még egy szám bemutatására szeretnénk kitérni, ez pedig a gravitáció és a Világegyetem tágulásának az arányát fejezi ki. Ha gyors a tágulás, egy nagy, de sivár Univerzum a végeredmény, ha lassú, akkor a gravitáció összehúzza az Univerzumot, mielőtt bármi érdekes kifejlődhetne benne. Ennek a két, egymás ellen dolgozó hatásnak tehát szintén egészen jól hangoltnak kell lennie, hogy a végeredmény egy élhető Univerzum legyen. Nagyon úgy néz ki, hogy az Ősrobbanás idején szinte végtelen pontossággal, 1-gyel kellett egyenlőnek lennie a kritikus sűrűség és az aktuális sűrűség arányának, ezért lehet, hogy ez az érték most is ennyi, és a Világegyetem nagy léptékben sima.

Aztán ott van az entrópia, a rendezetlenség mértéke, ami a termodinamika második törvénye szerint állandóan növekszik. A Világegyetemnek nulla entrópiával kellett keletkeznie ahhoz, hogy most ne csupán egy kaotikus leves legyen, hanem legyenek benne rendezett struktúrák. És itt most ne csak a földi életre gondoljunk, hanem azokra a többmilliárd fényév nagyságú filamentekre is, amelyek a legnagyobb rendezett struktúrák a világunkban.

Ne feledkezzünk meg a neutronról sem, amely a legérdekesebb építőköve világunknak. Semleges töltésű, úgy gondolhatnánk, nem sok szerepe lehet, de éppen ellenkezőleg. Semleges volta miatt tud az atommagba beépülni, és mivel a protonokkal az erős kölcsönhatás kapcsolja őket össze, így képesek a protonok egymás közti taszítását ellensúlyozni. Ha nem lenne a semleges neutron, amely részt tud venni az erős kölcsönhatásban, nem lennének atomok, és persze élet sem. Ráadásul a neutron nem örökéletű. Szabad állapotában nem stabil, kb. 14 perc alatt elbomlik. Egészen más a helyzet az atomon belül, ott a stabil atommagokban örökéletű, csak a radioaktív magokban bomlik béta-bomlással. Gondoljunk bele, ha minden atommagban megtartaná az instabilitását, semmilyen állandó atomi struktúra nem létezne, az elemek folyamatosan átalakulnának egymásba. Így az élet elképzelhetetlen lenne.

Még a legközönségesebbnek gondolt anyag, a víz is csodákat rejt. Az egyetlen anyag, amely fagyott állapotában könnyebb, mint folyékonyan, így a jég úszik a vízen. Ezért nem fagynak be a tengerek, a folyók, a tavak teljesen. Ha a víz nem ilyen lenne, az élet nem alakulhatott volna ki a tengerekben, és onnan nem hódíthatta volna meg a szárazföldet.

Hogy ezek a számok és tulajdonságok egy Intelligens Tervező létezését jelentik, avagy csupán a véletlennek köszönhető a jól hangoltságuk? Én úgy gondolom bármi is legyen a következtetés, ezek a számok még akkor is furcsa, borzongató tiszteletet kelthetnek bennünk, ha pusztán a véletlennek tulajdonítjuk a létezésüket.

Nyíregyháza, 2008. február 19. – 2013. augusztus 24.